中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 学术报告

序号	2013-02		
报告人	Dr. Frank Snijkers	职 称	
从事专业			
建议人	姜伟 研究员	主持人	姜伟 研究员
报告时间	2013.08.23 上午 9:30	报告地点	主楼四楼学术报告厅(410 室)
单 位	Polymers and Colloids Lab, FORTH, IESL, Heraklion, Crete, Greece		
通讯地址			
电 话	0032494886236	电子邮箱	frank.snijkers@gmail.com
报告人背景	Snijkers Frank, 男, 1982年5月生。1999年10月-2002年6月就读比		
	利时天主教鲁汶大学工程系,获得学士学位。2002 年 10 月-2005 年 6 月就读比利时天主教鲁汶大学化工系,获得硕士学位,指导老师为 Jan Vermant 教授。2005 年 10 月-2009 年 10 月就读比利时天主教鲁汶大学化工系,获得博士学位,指导老师为 Jan Vermant 教授。2010 年 2 月至今,加入希腊研究与技术基金会电子结构与激光研究所,高分子与胶体实验室从事研究工作。 当前研究兴趣:聚合物熔体、聚合物溶液、胶体及乳液等各种软物质的流变学研究		
报告题目	Architecturally complex polymers in nonlinear shear flows		

内 容 摘 要

In the last two decades, we have witnessed a remarkable progress in the understanding of the rheology of model architecturally complex polymers. Key ingredient that catalyzed these developments is the synergy of state-of-the-art chemistry, physico-chemical characterization, physical experiment and modeling. The linear viscoelastic relaxation of complex polymers is now understood and predictions of current tube-based models are in excellent agreement with experiments. The nonlinear flow behavior is however still elusive. Here, we attempt to obtain artifact-free nonlinear shear data for model polymers with the help of a special geometry. The obtained data exhibits systematic variations with molecular characteristics of the polymers and enhance our understanding of the effects of polymer architecture on the nonlinear flow behavior.